Improved adaptive sparse channel estimation using mixed square/fourth error criterion

نویسندگان

  • Guan Gui
  • Li Xu
  • Shin-ya Matsushita
چکیده

Sparse channel estimation problem is one of challenge technical issues in stable broadband wireless communications. Based on square error criterion (SEC), adaptive sparse channel estimation (ASCE) methods, e.g., zero-attracting least mean square error (ZA-LMS) algorithm and reweighted ZA-LMS (RZA-LMS) algorithm, have been proposed to mitigate noise interferences as well as to exploit the inherent channel sparsity. However, the conventional SEC-ASCE methods are vulnerable to 1) random scaling of input training signal; and 2) imbalance between convergence speed and steady state mean square error (MSE) performance due to fixed step-size of gradient descend method. In this paper, a mixed square/fourth error criterion (SFEC) based improved ASCE methods are proposed to avoid aforementioned shortcomings. Specifically, the improved SFEC-ASCE methods are realized with zero-attracting least mean square/fourth error (ZA-LMS/F) algorithm and reweighted ZA-LMS/F (RZA-LMS/F) algorithm, respectively. Firstly, regularization parameters of the SFECASCE methods are selected by means of Monte-Carlo simulations. Secondly, lower bounds of the SFEC-ASCE methods are derived and analyzed. Finally, simulation results are given to show that the proposed SFEC-ASCE methods achieve better estimation performance than the conventional SEC-ASCE methods. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation

This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system.  In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...

متن کامل

Least Mean Square/Fourth Algorithm with Application to Sparse Channel Estimation

Broadband signal transmission over frequencyselective fading channel often requires accurate channel state information at receiver. One of the most attracting adaptive channel estimation methods is least mean square (LMS) algorithm. However, LMS-based method is often degraded by random scaling of input training signal. To improve the estimation performance, in this paper we apply the standard l...

متن کامل

Adaptive Sparse Channel Estimation Methods for Time-Variant MIMO Communication Systems

Channel estimation problem is one of key technical issues in time-variant multiple-input multiple-output (MIMO) communication systems. To estimate the MIMO channel, least mean square (LMS) algorithm was applied to adaptive channel estimation (ACE). Since the MIMO channel is often described by sparse channel model, such sparsity could be exploited and then estimation performance could be improve...

متن کامل

Extra Gain: Improved Sparse Channel Estimation Using Reweighted l_1-norm Penalized LMS/F Algorithm

The channel estimation is one of important techniques to ensure reliable broadband signal transmission. Broadband channels are often modeled as a sparse channel. Comparing with traditional dense-assumption based linear channel estimation methods, e.g., least mean square/fourth (LMS/F) algorithm, exploiting sparse structure information can get extra performance gain. By introducing -norm penalty...

متن کامل

Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments

Sparse adaptive channel estimation problem is one of the most important topics in broadband wireless communications systems due to its simplicity and robustness. So far many sparsity-aware channel estimation algorithms have been developed based on the well-known minimum mean square error (MMSE) criterion, such as the zero-attracting least mean square (ZALMS),which are robust under Gaussian assu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1503.00798  شماره 

صفحات  -

تاریخ انتشار 2014